4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
30 * Copyright (c) 2011, 2012, Whamcloud, Inc.
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
36 * lustre/include/lustre_fid.h
38 * Author: Yury Umanets <umka@clusterfs.com>
52 #include <libcfs/libcfs.h>
53 #include <lustre/lustre_idl.h>
54 #include <lustre_req_layout.h>
55 #include <lustre_mdt.h>
61 /* Whole sequences space range and zero range definitions */
62 extern const struct lu_seq_range LUSTRE_SEQ_SPACE_RANGE;
63 extern const struct lu_seq_range LUSTRE_SEQ_ZERO_RANGE;
64 extern const struct lu_fid LUSTRE_BFL_FID;
65 extern const struct lu_fid LU_OBF_FID;
66 extern const struct lu_fid LU_DOT_LUSTRE_FID;
70 * This is how may FIDs may be allocated in one sequence(128k)
72 LUSTRE_SEQ_MAX_WIDTH = 0x0000000000020000ULL,
75 * How many sequences to allocate to a client at once.
77 LUSTRE_SEQ_META_WIDTH = 0x0000000000000001ULL,
80 * seq allocation pool size.
82 LUSTRE_SEQ_BATCH_WIDTH = LUSTRE_SEQ_META_WIDTH * 1000,
85 * This is how many sequences may be in one super-sequence allocated to
88 LUSTRE_SEQ_SUPER_WIDTH = ((1ULL << 30ULL) * LUSTRE_SEQ_META_WIDTH)
92 /** 2^6 FIDs for OI containers */
93 OSD_OI_FID_OID_BITS = 6,
94 /** reserve enough FIDs in case we want more in the future */
95 OSD_OI_FID_OID_BITS_MAX = 10,
98 /** special OID for local objects */
100 /** \see fld_mod_init */
102 /** \see fid_mod_init */
103 FID_SEQ_CTL_OID = 4UL,
104 FID_SEQ_SRV_OID = 5UL,
105 /** \see mdd_mod_init */
106 MDD_ROOT_INDEX_OID = 6UL,
107 MDD_ORPHAN_OID = 7UL,
108 MDD_LOV_OBJ_OID = 8UL,
109 MDD_CAPA_KEYS_OID = 9UL,
110 /** \see mdt_mod_init */
111 MDT_LAST_RECV_OID = 11UL,
112 OSD_FS_ROOT_OID = 13UL,
113 ACCT_USER_OID = 15UL,
114 ACCT_GROUP_OID = 16UL,
115 OFD_LAST_RECV_OID = 19UL,
116 OFD_GROUP0_LAST_OID = 20UL,
117 OFD_GROUP4K_LAST_OID = 20UL+4096,
118 OFD_LAST_GROUP_OID = 4117UL,
119 LLOG_CATALOGS_OID = 4118UL,
120 MGS_CONFIGS_OID = 4119UL,
121 OFD_HEALTH_CHECK_OID = 4120UL,
124 static inline void lu_local_obj_fid(struct lu_fid *fid, __u32 oid)
126 fid->f_seq = FID_SEQ_LOCAL_FILE;
131 static inline int fid_is_acct(const struct lu_fid *fid)
133 return fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
134 (fid_oid(fid) == ACCT_USER_OID ||
135 fid_oid(fid) == ACCT_GROUP_OID);
140 LUSTRE_SEQ_CONTROLLER
148 struct lu_server_seq;
150 /* Client sequence manager interface. */
151 struct lu_client_seq {
152 /* Sequence-controller export. */
153 struct obd_export *lcs_exp;
154 cfs_mutex_t lcs_mutex;
157 * Range of allowed for allocation sequeces. When using lu_client_seq on
158 * clients, this contains meta-sequence range. And for servers this
159 * contains super-sequence range.
161 struct lu_seq_range lcs_space;
163 /* Seq related proc */
164 cfs_proc_dir_entry_t *lcs_proc_dir;
166 /* This holds last allocated fid in last obtained seq */
167 struct lu_fid lcs_fid;
169 /* LUSTRE_SEQ_METADATA or LUSTRE_SEQ_DATA */
170 enum lu_cli_type lcs_type;
173 * Service uuid, passed from MDT + seq name to form unique seq name to
174 * use it with procfs.
179 * Sequence width, that is how many objects may be allocated in one
180 * sequence. Default value for it is LUSTRE_SEQ_MAX_WIDTH.
184 /* Seq-server for direct talking */
185 struct lu_server_seq *lcs_srv;
187 /* wait queue for fid allocation and update indicator */
188 cfs_waitq_t lcs_waitq;
192 /* server sequence manager interface */
193 struct lu_server_seq {
194 /* Available sequences space */
195 struct lu_seq_range lss_space;
197 /* keeps highwater in lsr_end for seq allocation algorithm */
198 struct lu_seq_range lss_lowater_set;
199 struct lu_seq_range lss_hiwater_set;
202 * Device for server side seq manager needs (saving sequences to backing
205 struct dt_device *lss_dev;
207 /* /seq file object device */
208 struct dt_object *lss_obj;
210 /* Seq related proc */
211 cfs_proc_dir_entry_t *lss_proc_dir;
213 /* LUSTRE_SEQ_SERVER or LUSTRE_SEQ_CONTROLLER */
214 enum lu_mgr_type lss_type;
216 /* Client interafce to request controller */
217 struct lu_client_seq *lss_cli;
219 /* Mutex for protecting allocation */
220 cfs_mutex_t lss_mutex;
223 * Service uuid, passed from MDT + seq name to form unique seq name to
224 * use it with procfs.
229 * Allocation chunks for super and meta sequences. Default values are
230 * LUSTRE_SEQ_SUPER_WIDTH and LUSTRE_SEQ_META_WIDTH.
235 * minimum lss_alloc_set size that should be allocated from
240 /* sync is needed for update operation */
243 * Pointer to site object, required to access site fld.
245 struct md_site *lss_site;
248 int seq_query(struct com_thread_info *info);
251 int seq_server_init(struct lu_server_seq *seq,
252 struct dt_device *dev,
254 enum lu_mgr_type type,
256 const struct lu_env *env);
258 void seq_server_fini(struct lu_server_seq *seq,
259 const struct lu_env *env);
261 int seq_server_alloc_super(struct lu_server_seq *seq,
262 struct lu_seq_range *out,
263 const struct lu_env *env);
265 int seq_server_alloc_meta(struct lu_server_seq *seq,
266 struct lu_seq_range *out,
267 const struct lu_env *env);
269 int seq_server_set_cli(struct lu_server_seq *seq,
270 struct lu_client_seq *cli,
271 const struct lu_env *env);
274 int seq_client_init(struct lu_client_seq *seq,
275 struct obd_export *exp,
276 enum lu_cli_type type,
278 struct lu_server_seq *srv);
280 void seq_client_fini(struct lu_client_seq *seq);
282 void seq_client_flush(struct lu_client_seq *seq);
284 int seq_client_alloc_fid(const struct lu_env *env, struct lu_client_seq *seq,
286 int seq_client_get_seq(const struct lu_env *env, struct lu_client_seq *seq,
289 /* Fids common stuff */
290 int fid_is_local(const struct lu_env *env,
291 struct lu_site *site, const struct lu_fid *fid);
295 struct ldlm_namespace;
298 * Build (DLM) resource name from FID.
300 * NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
301 * but was moved into name[1] along with the OID to avoid consuming the
302 * renaming name[2,3] fields that need to be used for the quota identifier.
304 static inline struct ldlm_res_id *
305 fid_build_reg_res_name(const struct lu_fid *f,
306 struct ldlm_res_id *name)
308 memset(name, 0, sizeof *name);
309 name->name[LUSTRE_RES_ID_SEQ_OFF] = fid_seq(f);
310 name->name[LUSTRE_RES_ID_VER_OID_OFF] = fid_ver_oid(f);
315 * Return true if resource is for object identified by fid.
317 static inline int fid_res_name_eq(const struct lu_fid *f,
318 const struct ldlm_res_id *name)
320 return name->name[LUSTRE_RES_ID_SEQ_OFF] == fid_seq(f) &&
321 name->name[LUSTRE_RES_ID_VER_OID_OFF] == fid_ver_oid(f);
325 static inline struct ldlm_res_id *
326 fid_build_pdo_res_name(const struct lu_fid *f,
328 struct ldlm_res_id *name)
330 fid_build_reg_res_name(f, name);
331 name->name[LUSTRE_RES_ID_HSH_OFF] = hash;
337 * Flatten 128-bit FID values into a 64-bit value for use as an inode number.
338 * For non-IGIF FIDs this starts just over 2^32, and continues without
339 * conflict until 2^64, at which point we wrap the high 24 bits of the SEQ
340 * into the range where there may not be many OID values in use, to minimize
341 * the risk of conflict.
343 * Suppose LUSTRE_SEQ_MAX_WIDTH less than (1 << 24) which is currently true,
344 * the time between re-used inode numbers is very long - 2^40 SEQ numbers,
345 * or about 2^40 client mounts, if clients create less than 2^24 files/mount.
347 static inline __u64 fid_flatten(const struct lu_fid *fid)
352 if (fid_is_igif(fid)) {
353 ino = lu_igif_ino(fid);
359 ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid);
361 RETURN(ino ? ino : fid_oid(fid));
364 static inline __u32 fid_hash(const struct lu_fid *f, int bits)
366 /* all objects with same id and different versions will belong to same
367 * collisions list. */
368 return cfs_hash_long(fid_flatten(f), bits);
372 * map fid to 32 bit value for ino on 32bit systems. */
373 static inline __u32 fid_flatten32(const struct lu_fid *fid)
378 if (fid_is_igif(fid)) {
379 ino = lu_igif_ino(fid);
383 seq = fid_seq(fid) - FID_SEQ_START;
385 /* Map the high bits of the OID into higher bits of the inode number so
386 * that inodes generated at about the same time have a reduced chance
387 * of collisions. This will give a period of 2^12 = 1024 unique clients
388 * (from SEQ) and up to min(LUSTRE_SEQ_MAX_WIDTH, 2^20) = 128k objects
389 * (from OID), or up to 128M inodes without collisions for new files. */
390 ino = ((seq & 0x000fffffULL) << 12) + ((seq >> 8) & 0xfffff000) +
391 (seq >> (64 - (40-8)) & 0xffffff00) +
392 (fid_oid(fid) & 0xff000fff) + ((fid_oid(fid) & 0x00fff000) << 8);
394 RETURN(ino ? ino : fid_oid(fid));
397 #define LUSTRE_SEQ_SRV_NAME "seq_srv"
398 #define LUSTRE_SEQ_CTL_NAME "seq_ctl"
400 /* Range common stuff */
401 static inline void range_cpu_to_le(struct lu_seq_range *dst, const struct lu_seq_range *src)
403 dst->lsr_start = cpu_to_le64(src->lsr_start);
404 dst->lsr_end = cpu_to_le64(src->lsr_end);
405 dst->lsr_index = cpu_to_le32(src->lsr_index);
406 dst->lsr_flags = cpu_to_le32(src->lsr_flags);
409 static inline void range_le_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
411 dst->lsr_start = le64_to_cpu(src->lsr_start);
412 dst->lsr_end = le64_to_cpu(src->lsr_end);
413 dst->lsr_index = le32_to_cpu(src->lsr_index);
414 dst->lsr_flags = le32_to_cpu(src->lsr_flags);
417 static inline void range_cpu_to_be(struct lu_seq_range *dst, const struct lu_seq_range *src)
419 dst->lsr_start = cpu_to_be64(src->lsr_start);
420 dst->lsr_end = cpu_to_be64(src->lsr_end);
421 dst->lsr_index = cpu_to_be32(src->lsr_index);
422 dst->lsr_flags = cpu_to_be32(src->lsr_flags);
425 static inline void range_be_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
427 dst->lsr_start = be64_to_cpu(src->lsr_start);
428 dst->lsr_end = be64_to_cpu(src->lsr_end);
429 dst->lsr_index = be32_to_cpu(src->lsr_index);
430 dst->lsr_flags = be32_to_cpu(src->lsr_flags);
435 #endif /* __LINUX_FID_H */