4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright (c) 2011, 2016, Intel Corporation.
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
33 #ifndef __LUSTRE_LU_OBJECT_H
34 #define __LUSTRE_LU_OBJECT_H
37 #include <libcfs/libcfs.h>
38 #include <lustre/lustre_idl.h>
40 #include <linux/percpu_counter.h>
43 struct proc_dir_entry;
48 * lu_* data-types represent server-side entities shared by data and meta-data
53 * -# support for layering.
55 * Server side object is split into layers, one per device in the
56 * corresponding device stack. Individual layer is represented by struct
57 * lu_object. Compound layered object --- by struct lu_object_header. Most
58 * interface functions take lu_object as an argument and operate on the
59 * whole compound object. This decision was made due to the following
62 * - it's envisaged that lu_object will be used much more often than
65 * - we want lower (non-top) layers to be able to initiate operations
66 * on the whole object.
68 * Generic code supports layering more complex than simple stacking, e.g.,
69 * it is possible that at some layer object "spawns" multiple sub-objects
72 * -# fid-based identification.
74 * Compound object is uniquely identified by its fid. Objects are indexed
75 * by their fids (hash table is used for index).
77 * -# caching and life-cycle management.
79 * Object's life-time is controlled by reference counting. When reference
80 * count drops to 0, object is returned to cache. Cached objects still
81 * retain their identity (i.e., fid), and can be recovered from cache.
83 * Objects are kept in the global LRU list, and lu_site_purge() function
84 * can be used to reclaim given number of unused objects from the tail of
87 * -# avoiding recursion.
89 * Generic code tries to replace recursion through layers by iterations
90 * where possible. Additionally to the end of reducing stack consumption,
91 * data, when practically possible, are allocated through lu_context_key
92 * interface rather than on stack.
99 struct lu_object_header;
104 * Operations common for data and meta-data devices.
106 struct lu_device_operations {
108 * Allocate object for the given device (without lower-layer
109 * parts). This is called by lu_object_operations::loo_object_init()
110 * from the parent layer, and should setup at least lu_object::lo_dev
111 * and lu_object::lo_ops fields of resulting lu_object.
113 * Object creation protocol.
115 * Due to design goal of avoiding recursion, object creation (see
116 * lu_object_alloc()) is somewhat involved:
118 * - first, lu_device_operations::ldo_object_alloc() method of the
119 * top-level device in the stack is called. It should allocate top
120 * level object (including lu_object_header), but without any
121 * lower-layer sub-object(s).
123 * - then lu_object_alloc() sets fid in the header of newly created
126 * - then lu_object_operations::loo_object_init() is called. It has
127 * to allocate lower-layer object(s). To do this,
128 * lu_object_operations::loo_object_init() calls ldo_object_alloc()
129 * of the lower-layer device(s).
131 * - for all new objects allocated by
132 * lu_object_operations::loo_object_init() (and inserted into object
133 * stack), lu_object_operations::loo_object_init() is called again
134 * repeatedly, until no new objects are created.
136 * \post ergo(!IS_ERR(result), result->lo_dev == d &&
137 * result->lo_ops != NULL);
139 struct lu_object *(*ldo_object_alloc)(const struct lu_env *env,
140 const struct lu_object_header *h,
141 struct lu_device *d);
143 * process config specific for device.
145 int (*ldo_process_config)(const struct lu_env *env,
146 struct lu_device *, struct lustre_cfg *);
147 int (*ldo_recovery_complete)(const struct lu_env *,
151 * initialize local objects for device. this method called after layer has
152 * been initialized (after LCFG_SETUP stage) and before it starts serving
156 int (*ldo_prepare)(const struct lu_env *,
157 struct lu_device *parent,
158 struct lu_device *dev);
163 * For lu_object_conf flags
166 /* This is a new object to be allocated, or the file
167 * corresponding to the object does not exists. */
168 LOC_F_NEW = 0x00000001,
170 /* When find a dying object, just return -EAGAIN at once instead of
171 * blocking the thread. */
172 LOC_F_NOWAIT = 0x00000002,
176 * Object configuration, describing particulars of object being created. On
177 * server this is not used, as server objects are full identified by fid. On
178 * client configuration contains struct lustre_md.
180 struct lu_object_conf {
182 * Some hints for obj find and alloc.
184 loc_flags_t loc_flags;
188 * Type of "printer" function used by lu_object_operations::loo_object_print()
191 * Printer function is needed to provide some flexibility in (semi-)debugging
192 * output: possible implementations: printk, CDEBUG, sysfs/seq_file
194 typedef int (*lu_printer_t)(const struct lu_env *env,
195 void *cookie, const char *format, ...)
196 __attribute__ ((format (printf, 3, 4)));
199 * Operations specific for particular lu_object.
201 struct lu_object_operations {
204 * Allocate lower-layer parts of the object by calling
205 * lu_device_operations::ldo_object_alloc() of the corresponding
208 * This method is called once for each object inserted into object
209 * stack. It's responsibility of this method to insert lower-layer
210 * object(s) it create into appropriate places of object stack.
212 int (*loo_object_init)(const struct lu_env *env,
214 const struct lu_object_conf *conf);
216 * Called (in top-to-bottom order) during object allocation after all
217 * layers were allocated and initialized. Can be used to perform
218 * initialization depending on lower layers.
220 int (*loo_object_start)(const struct lu_env *env,
221 struct lu_object *o);
223 * Called before lu_object_operations::loo_object_free() to signal
224 * that object is being destroyed. Dual to
225 * lu_object_operations::loo_object_init().
227 void (*loo_object_delete)(const struct lu_env *env,
228 struct lu_object *o);
230 * Dual to lu_device_operations::ldo_object_alloc(). Called when
231 * object is removed from memory.
233 void (*loo_object_free)(const struct lu_env *env,
234 struct lu_object *o);
236 * Called when last active reference to the object is released (and
237 * object returns to the cache). This method is optional.
239 void (*loo_object_release)(const struct lu_env *env,
240 struct lu_object *o);
242 * Optional debugging helper. Print given object.
244 int (*loo_object_print)(const struct lu_env *env, void *cookie,
245 lu_printer_t p, const struct lu_object *o);
247 * Optional debugging method. Returns true iff method is internally
250 int (*loo_object_invariant)(const struct lu_object *o);
256 struct lu_device_type;
259 * Device: a layer in the server side abstraction stacking.
263 * reference count. This is incremented, in particular, on each object
264 * created at this layer.
266 * \todo XXX which means that atomic_t is probably too small.
270 * Pointer to device type. Never modified once set.
272 struct lu_device_type *ld_type;
274 * Operation vector for this device.
276 const struct lu_device_operations *ld_ops;
278 * Stack this device belongs to.
280 struct lu_site *ld_site;
281 struct proc_dir_entry *ld_proc_entry;
283 /** \todo XXX: temporary back pointer into obd. */
284 struct obd_device *ld_obd;
286 * A list of references to this object, for debugging.
288 struct lu_ref ld_reference;
290 * Link the device to the site.
292 struct list_head ld_linkage;
295 struct lu_device_type_operations;
298 * Tag bits for device type. They are used to distinguish certain groups of
302 /** this is meta-data device */
303 LU_DEVICE_MD = (1 << 0),
304 /** this is data device */
305 LU_DEVICE_DT = (1 << 1),
306 /** data device in the client stack */
307 LU_DEVICE_CL = (1 << 2)
313 struct lu_device_type {
315 * Tag bits. Taken from enum lu_device_tag. Never modified once set.
319 * Name of this class. Unique system-wide. Never modified once set.
323 * Operations for this type.
325 const struct lu_device_type_operations *ldt_ops;
327 * \todo XXX: temporary pointer to associated obd_type.
329 struct obd_type *ldt_obd_type;
331 * \todo XXX: temporary: context tags used by obd_*() calls.
335 * Number of existing device type instances.
337 atomic_t ldt_device_nr;
341 * Operations on a device type.
343 struct lu_device_type_operations {
345 * Allocate new device.
347 struct lu_device *(*ldto_device_alloc)(const struct lu_env *env,
348 struct lu_device_type *t,
349 struct lustre_cfg *lcfg);
351 * Free device. Dual to
352 * lu_device_type_operations::ldto_device_alloc(). Returns pointer to
353 * the next device in the stack.
355 struct lu_device *(*ldto_device_free)(const struct lu_env *,
359 * Initialize the devices after allocation
361 int (*ldto_device_init)(const struct lu_env *env,
362 struct lu_device *, const char *,
365 * Finalize device. Dual to
366 * lu_device_type_operations::ldto_device_init(). Returns pointer to
367 * the next device in the stack.
369 struct lu_device *(*ldto_device_fini)(const struct lu_env *env,
372 * Initialize device type. This is called on module load.
374 int (*ldto_init)(struct lu_device_type *t);
376 * Finalize device type. Dual to
377 * lu_device_type_operations::ldto_init(). Called on module unload.
379 void (*ldto_fini)(struct lu_device_type *t);
381 * Called when the first device is created.
383 void (*ldto_start)(struct lu_device_type *t);
385 * Called when number of devices drops to 0.
387 void (*ldto_stop)(struct lu_device_type *t);
390 static inline int lu_device_is_md(const struct lu_device *d)
392 return ergo(d != NULL, d->ld_type->ldt_tags & LU_DEVICE_MD);
396 * Common object attributes.
407 /** modification time in seconds since Epoch */
409 /** access time in seconds since Epoch */
411 /** change time in seconds since Epoch */
413 /** 512-byte blocks allocated to object */
415 /** permission bits and file type */
423 /** number of persistent references to this object */
425 /** blk bits of the object*/
427 /** blk size of the object*/
435 /** Bit-mask of valid attributes */
449 LA_BLKSIZE = 1 << 12,
450 LA_KILL_SUID = 1 << 13,
451 LA_KILL_SGID = 1 << 14,
456 * Layer in the layered object.
460 * Header for this object.
462 struct lu_object_header *lo_header;
464 * Device for this layer.
466 struct lu_device *lo_dev;
468 * Operations for this object.
470 const struct lu_object_operations *lo_ops;
472 * Linkage into list of all layers.
474 struct list_head lo_linkage;
476 * Link to the device, for debugging.
478 struct lu_ref_link lo_dev_ref;
481 enum lu_object_header_flags {
483 * Don't keep this object in cache. Object will be destroyed as soon
484 * as last reference to it is released. This flag cannot be cleared
487 LU_OBJECT_HEARD_BANSHEE = 0,
489 * Mark this object has already been taken out of cache.
491 LU_OBJECT_UNHASHED = 1,
494 enum lu_object_header_attr {
495 LOHA_EXISTS = 1 << 0,
496 LOHA_REMOTE = 1 << 1,
498 * UNIX file type is stored in S_IFMT bits.
500 LOHA_FT_START = 001 << 12, /**< S_IFIFO */
501 LOHA_FT_END = 017 << 12, /**< S_IFMT */
505 * "Compound" object, consisting of multiple layers.
507 * Compound object with given fid is unique with given lu_site.
509 * Note, that object does *not* necessary correspond to the real object in the
510 * persistent storage: object is an anchor for locking and method calling, so
511 * it is created for things like not-yet-existing child created by mkdir or
512 * create calls. lu_object_operations::loo_exists() can be used to check
513 * whether object is backed by persistent storage entity.
515 struct lu_object_header {
517 * Fid, uniquely identifying this object.
519 struct lu_fid loh_fid;
521 * Object flags from enum lu_object_header_flags. Set and checked
524 unsigned long loh_flags;
526 * Object reference count. Protected by lu_site::ls_guard.
530 * Common object attributes, cached for efficiency. From enum
531 * lu_object_header_attr.
535 * Linkage into per-site hash table. Protected by lu_site::ls_guard.
537 struct hlist_node loh_hash;
539 * Linkage into per-site LRU list. Protected by lu_site::ls_guard.
541 struct list_head loh_lru;
543 * Linkage into list of layers. Never modified once set (except lately
544 * during object destruction). No locking is necessary.
546 struct list_head loh_layers;
548 * A list of references to this object, for debugging.
550 struct lu_ref loh_reference;
555 struct lu_site_bkt_data {
557 * number of object in this bucket on the lsb_lru list.
561 * LRU list, updated on each access to object. Protected by
562 * bucket lock of lu_site::ls_obj_hash.
564 * "Cold" end of LRU is lu_site::ls_lru.next. Accessed object are
565 * moved to the lu_site::ls_lru.prev (this is due to the non-existence
566 * of list_for_each_entry_safe_reverse()).
568 struct list_head lsb_lru;
570 * Wait-queue signaled when an object in this site is ultimately
571 * destroyed (lu_object_free()). It is used by lu_object_find() to
572 * wait before re-trying when object in the process of destruction is
573 * found in the hash table.
575 * \see htable_lookup().
577 wait_queue_head_t lsb_marche_funebre;
585 LU_SS_CACHE_DEATH_RACE,
591 * lu_site is a "compartment" within which objects are unique, and LRU
592 * discipline is maintained.
594 * lu_site exists so that multiple layered stacks can co-exist in the same
597 * lu_site has the same relation to lu_device as lu_object_header to
604 struct cfs_hash *ls_obj_hash;
606 * index of bucket on hash table while purging
608 unsigned int ls_purge_start;
610 * Top-level device for this stack.
612 struct lu_device *ls_top_dev;
614 * Bottom-level device for this stack
616 struct lu_device *ls_bottom_dev;
618 * Linkage into global list of sites.
620 struct list_head ls_linkage;
622 * List for lu device for this site, protected
625 struct list_head ls_ld_linkage;
626 spinlock_t ls_ld_lock;
628 * Lock to serialize site purge.
630 struct mutex ls_purge_mutex;
634 struct lprocfs_stats *ls_stats;
636 * XXX: a hack! fld has to find md_site via site, remove when possible
638 struct seq_server_site *ld_seq_site;
640 * Pointer to the lu_target for this site.
642 struct lu_target *ls_tgt;
645 * Number of objects in lsb_lru_lists - used for shrinking
647 struct percpu_counter ls_lru_len_counter;
650 static inline struct lu_site_bkt_data *
651 lu_site_bkt_from_fid(struct lu_site *site, struct lu_fid *fid)
653 struct cfs_hash_bd bd;
655 cfs_hash_bd_get(site->ls_obj_hash, fid, &bd);
656 return cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
659 static inline struct seq_server_site *lu_site2seq(const struct lu_site *s)
661 return s->ld_seq_site;
665 * Constructors/destructors.
669 int lu_site_init (struct lu_site *s, struct lu_device *d);
670 void lu_site_fini (struct lu_site *s);
671 int lu_site_init_finish (struct lu_site *s);
672 void lu_stack_fini (const struct lu_env *env, struct lu_device *top);
673 void lu_device_get (struct lu_device *d);
674 void lu_device_put (struct lu_device *d);
675 int lu_device_init (struct lu_device *d, struct lu_device_type *t);
676 void lu_device_fini (struct lu_device *d);
677 int lu_object_header_init(struct lu_object_header *h);
678 void lu_object_header_fini(struct lu_object_header *h);
679 int lu_object_init (struct lu_object *o,
680 struct lu_object_header *h, struct lu_device *d);
681 void lu_object_fini (struct lu_object *o);
682 void lu_object_add_top (struct lu_object_header *h, struct lu_object *o);
683 void lu_object_add (struct lu_object *before, struct lu_object *o);
685 void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d);
686 void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d);
689 * Helpers to initialize and finalize device types.
692 int lu_device_type_init(struct lu_device_type *ldt);
693 void lu_device_type_fini(struct lu_device_type *ldt);
698 * Caching and reference counting.
703 * Acquire additional reference to the given object. This function is used to
704 * attain additional reference. To acquire initial reference use
707 static inline void lu_object_get(struct lu_object *o)
709 LASSERT(atomic_read(&o->lo_header->loh_ref) > 0);
710 atomic_inc(&o->lo_header->loh_ref);
714 * Return true of object will not be cached after last reference to it is
717 static inline int lu_object_is_dying(const struct lu_object_header *h)
719 return test_bit(LU_OBJECT_HEARD_BANSHEE, &h->loh_flags);
722 void lu_object_put(const struct lu_env *env, struct lu_object *o);
723 void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o);
724 void lu_object_unhash(const struct lu_env *env, struct lu_object *o);
725 int lu_site_purge_objects(const struct lu_env *env, struct lu_site *s, int nr,
728 static inline int lu_site_purge(const struct lu_env *env, struct lu_site *s,
731 return lu_site_purge_objects(env, s, nr, 1);
734 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
735 lu_printer_t printer);
736 struct lu_object *lu_object_find(const struct lu_env *env,
737 struct lu_device *dev, const struct lu_fid *f,
738 const struct lu_object_conf *conf);
739 struct lu_object *lu_object_find_at(const struct lu_env *env,
740 struct lu_device *dev,
741 const struct lu_fid *f,
742 const struct lu_object_conf *conf);
743 struct lu_object *lu_object_find_slice(const struct lu_env *env,
744 struct lu_device *dev,
745 const struct lu_fid *f,
746 const struct lu_object_conf *conf);
755 * First (topmost) sub-object of given compound object
757 static inline struct lu_object *lu_object_top(struct lu_object_header *h)
759 LASSERT(!list_empty(&h->loh_layers));
760 return container_of0(h->loh_layers.next, struct lu_object, lo_linkage);
764 * Next sub-object in the layering
766 static inline struct lu_object *lu_object_next(const struct lu_object *o)
768 return container_of0(o->lo_linkage.next, struct lu_object, lo_linkage);
772 * Pointer to the fid of this object.
774 static inline const struct lu_fid *lu_object_fid(const struct lu_object *o)
776 return &o->lo_header->loh_fid;
780 * return device operations vector for this object
782 static const inline struct lu_device_operations *
783 lu_object_ops(const struct lu_object *o)
785 return o->lo_dev->ld_ops;
789 * Given a compound object, find its slice, corresponding to the device type
792 struct lu_object *lu_object_locate(struct lu_object_header *h,
793 const struct lu_device_type *dtype);
796 * Printer function emitting messages through libcfs_debug_msg().
798 int lu_cdebug_printer(const struct lu_env *env,
799 void *cookie, const char *format, ...);
802 * Print object description followed by a user-supplied message.
804 #define LU_OBJECT_DEBUG(mask, env, object, format, ...) \
806 if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) { \
807 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL); \
808 lu_object_print(env, &msgdata, lu_cdebug_printer, object);\
809 CDEBUG(mask, format "\n", ## __VA_ARGS__); \
814 * Print short object description followed by a user-supplied message.
816 #define LU_OBJECT_HEADER(mask, env, object, format, ...) \
818 if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) { \
819 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL); \
820 lu_object_header_print(env, &msgdata, lu_cdebug_printer,\
821 (object)->lo_header); \
822 lu_cdebug_printer(env, &msgdata, "\n"); \
823 CDEBUG(mask, format , ## __VA_ARGS__); \
827 void lu_object_print (const struct lu_env *env, void *cookie,
828 lu_printer_t printer, const struct lu_object *o);
829 void lu_object_header_print(const struct lu_env *env, void *cookie,
830 lu_printer_t printer,
831 const struct lu_object_header *hdr);
834 * Check object consistency.
836 int lu_object_invariant(const struct lu_object *o);
840 * Check whether object exists, no matter on local or remote storage.
841 * Note: LOHA_EXISTS will be set once some one created the object,
842 * and it does not needs to be committed to storage.
844 #define lu_object_exists(o) ((o)->lo_header->loh_attr & LOHA_EXISTS)
847 * Check whether object on the remote storage.
849 #define lu_object_remote(o) unlikely((o)->lo_header->loh_attr & LOHA_REMOTE)
851 static inline int lu_object_assert_exists(const struct lu_object *o)
853 return lu_object_exists(o);
856 static inline int lu_object_assert_not_exists(const struct lu_object *o)
858 return !lu_object_exists(o);
862 * Attr of this object.
864 static inline __u32 lu_object_attr(const struct lu_object *o)
866 LASSERT(lu_object_exists(o) != 0);
867 return o->lo_header->loh_attr;
870 static inline void lu_object_ref_add(struct lu_object *o,
874 lu_ref_add(&o->lo_header->loh_reference, scope, source);
877 static inline void lu_object_ref_add_at(struct lu_object *o,
878 struct lu_ref_link *link,
882 lu_ref_add_at(&o->lo_header->loh_reference, link, scope, source);
885 static inline void lu_object_ref_del(struct lu_object *o,
886 const char *scope, const void *source)
888 lu_ref_del(&o->lo_header->loh_reference, scope, source);
891 static inline void lu_object_ref_del_at(struct lu_object *o,
892 struct lu_ref_link *link,
893 const char *scope, const void *source)
895 lu_ref_del_at(&o->lo_header->loh_reference, link, scope, source);
898 /** input params, should be filled out by mdt */
902 /** count in bytes */
903 unsigned int rp_count;
904 /** number of pages */
905 unsigned int rp_npages;
906 /** requested attr */
908 /** pointers to pages */
909 struct page **rp_pages;
912 enum lu_xattr_flags {
913 LU_XATTR_REPLACE = (1 << 0),
914 LU_XATTR_CREATE = (1 << 1)
922 /** For lu_context health-checks */
923 enum lu_context_state {
931 * lu_context. Execution context for lu_object methods. Currently associated
934 * All lu_object methods, except device and device type methods (called during
935 * system initialization and shutdown) are executed "within" some
936 * lu_context. This means, that pointer to some "current" lu_context is passed
937 * as an argument to all methods.
939 * All service ptlrpc threads create lu_context as part of their
940 * initialization. It is possible to create "stand-alone" context for other
941 * execution environments (like system calls).
943 * lu_object methods mainly use lu_context through lu_context_key interface
944 * that allows each layer to associate arbitrary pieces of data with each
945 * context (see pthread_key_create(3) for similar interface).
947 * On a client, lu_context is bound to a thread, see cl_env_get().
949 * \see lu_context_key
953 * lu_context is used on the client side too. Yet we don't want to
954 * allocate values of server-side keys for the client contexts and
957 * To achieve this, set of tags in introduced. Contexts and keys are
958 * marked with tags. Key value are created only for context whose set
959 * of tags has non-empty intersection with one for key. Tags are taken
960 * from enum lu_context_tag.
963 enum lu_context_state lc_state;
965 * Pointer to the home service thread. NULL for other execution
968 struct ptlrpc_thread *lc_thread;
970 * Pointer to an array with key values. Internal implementation
975 * Linkage into a list of all remembered contexts. Only
976 * `non-transient' contexts, i.e., ones created for service threads
979 struct list_head lc_remember;
981 * Version counter used to skip calls to lu_context_refill() when no
982 * keys were registered.
992 * lu_context_key interface. Similar to pthread_key.
995 enum lu_context_tag {
997 * Thread on md server
999 LCT_MD_THREAD = 1 << 0,
1001 * Thread on dt server
1003 LCT_DT_THREAD = 1 << 1,
1005 * Context for transaction handle
1007 LCT_TX_HANDLE = 1 << 2,
1011 LCT_CL_THREAD = 1 << 3,
1013 * A per-request session on a server, and a per-system-call session on
1016 LCT_SESSION = 1 << 4,
1018 * A per-request data on OSP device
1020 LCT_OSP_THREAD = 1 << 5,
1024 LCT_MG_THREAD = 1 << 6,
1026 * Context for local operations
1030 * session for server thread
1032 LCT_SERVER_SESSION = 1 << 8,
1034 * Set when at least one of keys, having values in this context has
1035 * non-NULL lu_context_key::lct_exit() method. This is used to
1036 * optimize lu_context_exit() call.
1038 LCT_HAS_EXIT = 1 << 28,
1040 * Don't add references for modules creating key values in that context.
1041 * This is only for contexts used internally by lu_object framework.
1043 LCT_NOREF = 1 << 29,
1045 * Key is being prepared for retiring, don't create new values for it.
1047 LCT_QUIESCENT = 1 << 30,
1049 * Context should be remembered.
1051 LCT_REMEMBER = 1 << 31,
1053 * Contexts usable in cache shrinker thread.
1055 LCT_SHRINKER = LCT_MD_THREAD|LCT_DT_THREAD|LCT_CL_THREAD|LCT_NOREF
1059 * Key. Represents per-context value slot.
1061 * Keys are usually registered when module owning the key is initialized, and
1062 * de-registered when module is unloaded. Once key is registered, all new
1063 * contexts with matching tags, will get key value. "Old" contexts, already
1064 * initialized at the time of key registration, can be forced to get key value
1065 * by calling lu_context_refill().
1067 * Every key value is counted in lu_context_key::lct_used and acquires a
1068 * reference on an owning module. This means, that all key values have to be
1069 * destroyed before module can be unloaded. This is usually achieved by
1070 * stopping threads started by the module, that created contexts in their
1071 * entry functions. Situation is complicated by the threads shared by multiple
1072 * modules, like ptlrpcd daemon on a client. To work around this problem,
1073 * contexts, created in such threads, are `remembered' (see
1074 * LCT_REMEMBER)---i.e., added into a global list. When module is preparing
1075 * for unloading it does the following:
1077 * - marks its keys as `quiescent' (lu_context_tag::LCT_QUIESCENT)
1078 * preventing new key values from being allocated in the new contexts,
1081 * - scans a list of remembered contexts, destroying values of module
1082 * keys, thus releasing references to the module.
1084 * This is done by lu_context_key_quiesce(). If module is re-activated
1085 * before key has been de-registered, lu_context_key_revive() call clears
1086 * `quiescent' marker.
1088 * lu_context code doesn't provide any internal synchronization for these
1089 * activities---it's assumed that startup (including threads start-up) and
1090 * shutdown are serialized by some external means.
1094 struct lu_context_key {
1096 * Set of tags for which values of this key are to be instantiated.
1100 * Value constructor. This is called when new value is created for a
1101 * context. Returns pointer to new value of error pointer.
1103 void *(*lct_init)(const struct lu_context *ctx,
1104 struct lu_context_key *key);
1106 * Value destructor. Called when context with previously allocated
1107 * value of this slot is destroyed. \a data is a value that was returned
1108 * by a matching call to lu_context_key::lct_init().
1110 void (*lct_fini)(const struct lu_context *ctx,
1111 struct lu_context_key *key, void *data);
1113 * Optional method called on lu_context_exit() for all allocated
1114 * keys. Can be used by debugging code checking that locks are
1117 void (*lct_exit)(const struct lu_context *ctx,
1118 struct lu_context_key *key, void *data);
1120 * Internal implementation detail: index within lu_context::lc_value[]
1121 * reserved for this key.
1125 * Internal implementation detail: number of values created for this
1130 * Internal implementation detail: module for this key.
1132 struct module *lct_owner;
1134 * References to this key. For debugging.
1136 struct lu_ref lct_reference;
1139 #define LU_KEY_INIT(mod, type) \
1140 static void* mod##_key_init(const struct lu_context *ctx, \
1141 struct lu_context_key *key) \
1145 CLASSERT(PAGE_SIZE >= sizeof(*value)); \
1147 OBD_ALLOC_PTR(value); \
1148 if (value == NULL) \
1149 value = ERR_PTR(-ENOMEM); \
1153 struct __##mod##__dummy_init {;} /* semicolon catcher */
1155 #define LU_KEY_FINI(mod, type) \
1156 static void mod##_key_fini(const struct lu_context *ctx, \
1157 struct lu_context_key *key, void* data) \
1159 type *info = data; \
1161 OBD_FREE_PTR(info); \
1163 struct __##mod##__dummy_fini {;} /* semicolon catcher */
1165 #define LU_KEY_INIT_FINI(mod, type) \
1166 LU_KEY_INIT(mod,type); \
1167 LU_KEY_FINI(mod,type)
1169 #define LU_CONTEXT_KEY_DEFINE(mod, tags) \
1170 struct lu_context_key mod##_thread_key = { \
1172 .lct_init = mod##_key_init, \
1173 .lct_fini = mod##_key_fini \
1176 #define LU_CONTEXT_KEY_INIT(key) \
1178 (key)->lct_owner = THIS_MODULE; \
1181 int lu_context_key_register(struct lu_context_key *key);
1182 void lu_context_key_degister(struct lu_context_key *key);
1183 void *lu_context_key_get (const struct lu_context *ctx,
1184 const struct lu_context_key *key);
1185 void lu_context_key_quiesce (struct lu_context_key *key);
1186 void lu_context_key_revive (struct lu_context_key *key);
1190 * LU_KEY_INIT_GENERIC() has to be a macro to correctly determine an
1194 #define LU_KEY_INIT_GENERIC(mod) \
1195 static void mod##_key_init_generic(struct lu_context_key *k, ...) \
1197 struct lu_context_key *key = k; \
1200 va_start(args, k); \
1202 LU_CONTEXT_KEY_INIT(key); \
1203 key = va_arg(args, struct lu_context_key *); \
1204 } while (key != NULL); \
1208 #define LU_TYPE_INIT(mod, ...) \
1209 LU_KEY_INIT_GENERIC(mod) \
1210 static int mod##_type_init(struct lu_device_type *t) \
1212 mod##_key_init_generic(__VA_ARGS__, NULL); \
1213 return lu_context_key_register_many(__VA_ARGS__, NULL); \
1215 struct __##mod##_dummy_type_init {;}
1217 #define LU_TYPE_FINI(mod, ...) \
1218 static void mod##_type_fini(struct lu_device_type *t) \
1220 lu_context_key_degister_many(__VA_ARGS__, NULL); \
1222 struct __##mod##_dummy_type_fini {;}
1224 #define LU_TYPE_START(mod, ...) \
1225 static void mod##_type_start(struct lu_device_type *t) \
1227 lu_context_key_revive_many(__VA_ARGS__, NULL); \
1229 struct __##mod##_dummy_type_start {;}
1231 #define LU_TYPE_STOP(mod, ...) \
1232 static void mod##_type_stop(struct lu_device_type *t) \
1234 lu_context_key_quiesce_many(__VA_ARGS__, NULL); \
1236 struct __##mod##_dummy_type_stop {;}
1240 #define LU_TYPE_INIT_FINI(mod, ...) \
1241 LU_TYPE_INIT(mod, __VA_ARGS__); \
1242 LU_TYPE_FINI(mod, __VA_ARGS__); \
1243 LU_TYPE_START(mod, __VA_ARGS__); \
1244 LU_TYPE_STOP(mod, __VA_ARGS__)
1246 int lu_context_init (struct lu_context *ctx, __u32 tags);
1247 void lu_context_fini (struct lu_context *ctx);
1248 void lu_context_enter (struct lu_context *ctx);
1249 void lu_context_exit (struct lu_context *ctx);
1250 int lu_context_refill(struct lu_context *ctx);
1253 * Helper functions to operate on multiple keys. These are used by the default
1254 * device type operations, defined by LU_TYPE_INIT_FINI().
1257 int lu_context_key_register_many(struct lu_context_key *k, ...);
1258 void lu_context_key_degister_many(struct lu_context_key *k, ...);
1259 void lu_context_key_revive_many (struct lu_context_key *k, ...);
1260 void lu_context_key_quiesce_many (struct lu_context_key *k, ...);
1263 * update/clear ctx/ses tags.
1265 void lu_context_tags_update(__u32 tags);
1266 void lu_context_tags_clear(__u32 tags);
1267 void lu_session_tags_update(__u32 tags);
1268 void lu_session_tags_clear(__u32 tags);
1275 * "Local" context, used to store data instead of stack.
1277 struct lu_context le_ctx;
1279 * "Session" context for per-request data.
1281 struct lu_context *le_ses;
1284 int lu_env_init (struct lu_env *env, __u32 tags);
1285 void lu_env_fini (struct lu_env *env);
1286 int lu_env_refill(struct lu_env *env);
1287 int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags, __u32 stags);
1289 /** @} lu_context */
1292 * Output site statistical counters into a buffer. Suitable for
1293 * ll_rd_*()-style functions.
1295 int lu_site_stats_seq_print(const struct lu_site *s, struct seq_file *m);
1298 * Common name structure to be passed around for various name related methods.
1301 const char *ln_name;
1306 * Validate names (path components)
1308 * To be valid \a name must be non-empty, '\0' terminated of length \a
1309 * name_len, and not contain '/'. The maximum length of a name (before
1310 * say -ENAMETOOLONG will be returned) is really controlled by llite
1311 * and the server. We only check for something insane coming from bad
1312 * integer handling here.
1314 static inline bool lu_name_is_valid_2(const char *name, size_t name_len)
1316 return name != NULL &&
1318 name_len < INT_MAX &&
1319 name[name_len] == '\0' &&
1320 strlen(name) == name_len &&
1321 memchr(name, '/', name_len) == NULL;
1324 static inline bool lu_name_is_valid(const struct lu_name *ln)
1326 return lu_name_is_valid_2(ln->ln_name, ln->ln_namelen);
1329 #define DNAME "%.*s"
1331 (lu_name_is_valid(ln) ? (ln)->ln_namelen : 0), \
1332 (lu_name_is_valid(ln) ? (ln)->ln_name : "")
1335 * Common buffer structure to be passed around for various xattr_{s,g}et()
1343 #define DLUBUF "(%p %zu)"
1344 #define PLUBUF(buf) (buf)->lb_buf, (buf)->lb_len
1346 /* read buffer params, should be filled out by out */
1348 /** number of buffers */
1349 unsigned int rb_nbufs;
1350 /** pointers to buffers */
1351 struct lu_buf rb_bufs[];
1355 * One-time initializers, called at obdclass module initialization, not
1360 * Initialization of global lu_* data.
1362 int lu_global_init(void);
1365 * Dual to lu_global_init().
1367 void lu_global_fini(void);
1369 struct lu_kmem_descr {
1370 struct kmem_cache **ckd_cache;
1371 const char *ckd_name;
1372 const size_t ckd_size;
1375 int lu_kmem_init(struct lu_kmem_descr *caches);
1376 void lu_kmem_fini(struct lu_kmem_descr *caches);
1378 void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
1379 const struct lu_fid *fid);
1380 struct lu_object *lu_object_anon(const struct lu_env *env,
1381 struct lu_device *dev,
1382 const struct lu_object_conf *conf);
1385 extern struct lu_buf LU_BUF_NULL;
1387 void lu_buf_free(struct lu_buf *buf);
1388 void lu_buf_alloc(struct lu_buf *buf, size_t size);
1389 void lu_buf_realloc(struct lu_buf *buf, size_t size);
1391 int lu_buf_check_and_grow(struct lu_buf *buf, size_t len);
1392 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, size_t len);
1394 extern __u32 lu_context_tags_default;
1395 extern __u32 lu_session_tags_default;
1397 static inline bool lu_device_is_cl(const struct lu_device *d)
1399 return d->ld_type->ldt_tags & LU_DEVICE_CL;
1402 static inline bool lu_object_is_cl(const struct lu_object *o)
1404 return lu_device_is_cl(o->lo_dev);
1408 #endif /* __LUSTRE_LU_OBJECT_H */